Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2-methylimidazolium) chloranilate

Li-Hui Jia,* Zong-E Mu and Zu-Li Liu

Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
Correspondence e-mail: jialihui715@gmail.com
Received 21 September 2007; accepted 2 October 2007
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.052 ; w R$ factor $=0.132 ;$ data-to-parameter ratio $=16.2$.

The asymmetric unit of the title structure, $2 \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+}$.$\mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$, consists of one 2-methylimidazolium cation and one-half of a chloranilate anion, the formula unit being generated by crystallographic inversion symmetry. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the ions into a two-dimensional framework parallel to the (102) plane. No $\pi-\pi$ stacking or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are observed in the crystal structure.

Related literature

For related literature, see: Bernstein et al. (1995); Ishida \& Kashino (2001); Ishida (2004a,b); Meng \& Qian (2006); Min et $a l$. (2006); Wang \& Wei (2005).

Experimental

Crystal data

$2 \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$
$M_{r}=373.20$
Monoclinic, $P 2_{1 / c} c$
$a=8.5092$ (10) A
$b=7.6658$ (9) \AA
$c=12.7204$ (16) \AA
$\beta=91.204$ (2) ${ }^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
$V=829.57(17) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=296$ (2) K
$0.12 \times 0.05 \times 0.02 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.942, T_{\max }=0.992$

9164 measured reflections 1880 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.132 \quad$ independent and constrained
$S=1.01$
1880 reflections
116 parameters
refinement
1150 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	$0.99(3)$	$1.73(3)$	$2.713(3)$	$172(2)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.82(3)$	$1.96(3)$	$2.719(3)$	$152(3)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots 1^{\mathrm{i}}$	$0.82(3)$	$2.40(3)$	$3.014(3)$	$132(3)$
Symmetry code: (i) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$				

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors acknowledge support from the Key Project of the National Natural Science Foundation of China (grant No. 20490210) and from National Natural Science Foundation of China (grant Nos. 10574047 and 10574048). This work was also supported by the National 973 Project under grant No. 2006CB921600 and by the Programme on Major International Cooperation Projects (grant No. 2003DF000034).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2514).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.
Ishida, H. (2004a). Acta Cryst. E60, o2506-o2508.
Ishida, H. (2004b). Acta Cryst. E60, o974-o976.
Ishida, H. \& Kashino, S. (2001). Acta Cryst. C57, 476-479.
Meng, X.-G. \& Qian, J.-L. (2006). Acta Cryst. E62, o4178-o4180.
Min, S. K., Rheingold, A. L., DiPasquale, A. \& Miller, J. S. (2006). Inorg. Chem. 45, 6135-6137.
Sheldrick, G. M. (1996). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, Z.-L. \& Wei, L.-H. (2005). Acta Cryst. E61, o3129-o3130.

supplementary materials

Acta Cryst. (2008). E64, o32 [doi:10.1107/S1600536807048374]

Bis(2-methylimidazolium) chloranilate

L.-H. Jia, Z.-E. Mu and Z.-L. Liu

Comment

Chloranilic acid (CA) is a potential bridging ligand which is often used in the synthesis of metal organic frameworks (Min et al., 2006). Also some organic salts containing chloranilate have been reported recently (Ishida, 2004a,b; Ishida \& Kashino, 2001; Wang \& Wei, 2005, Meng \& Qian, 2006). In the hydrothermal process using equimolar amounts of CA, 2-Methylimidazole (2-MeIm) and copper nitrate, we unexpectedly obtained the title compound, and report herein its crystal structure.

The asymmetric unit contains one 2-methylimidazolium cation, half of a chloranilate anion the formula unit being generated by crystallogrphic inversion symmetry (Fig. 1). A proton has been transferred from the hydroxyl group in CA to the 2-MeIm N atom, forming the 1:2 organic salt.

In the crystal structure, by a combination of three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) the molecules are linked into a two-dimensional framework (Fig. 2) built from the $R^{2}{ }_{1}(5)$ and $R^{6}{ }_{8}(32)$ rings (Bernstein et al., 1995) running parallel to the (102) plane. Two such networks pass through the cell and analysis using PLATON (Spek, 2003) shows that there are no direction-specific interactions such as $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions observed in the packing of the structure.

Experimental

All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of CA (0.2 mmol , $41.4 \mathrm{mg})$, 2-MeIm ($0.2 \mathrm{mmol}, 16.2 \mathrm{mg}$) and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3\left(\mathrm{H}_{2} \mathrm{O}\right)(0.2 \mathrm{mmol}, 48 \mathrm{mg})$ in 10 ml water solvent sealed in a 25 ml Teflon-lined autoclave. The mixture was heated to 393 K and maintained for 48 h . After slowly cooling to room temperature with the rate of $5 \% \mathrm{~h}$, dark red crystals suitable for single-crystal X-ray diffraction analysis were obtained. The crystals were filtered and washed with distilled water and dried in air.

Refinement

H atoms bonded to carbon atoms were located at the geometrical positions $[\mathrm{C}-\mathrm{H}=0.96 \AA$ (methyl) or $0.93 \AA$ (aromatic), and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}$ (methyl) or $1.2 U_{\mathrm{eq}}$ (aromatic). H atoms attached to N atoms were located in difference fourier maps and $\mathrm{N} — \mathrm{H}$ distance refined freely and their $U_{\text {iso }}$ values set 1.2 times of their carrier atoms.

Figures

Fig. 1. Molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown as dashed lines.

supplementary materials

Fig. 2. Part of the crystal structure, showing the formation of the two-dimensional network by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. H-bonds are shown as dashed lines.

Bis(2-methylimidazolium) chloranilate

Crystal data

$2 \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$
$M_{r}=373.20$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=8.5092(10) \AA$
$b=7.6658(9) \AA$
$c=12.7204(16) \AA$
$\beta=91.204(2)^{\circ}$
$V=829.57(17) \AA^{3}$
$Z=2$
$F_{000}=384$
$D_{\mathrm{x}}=1.494 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 863 reflections
$\theta=2.4-19.5^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Plate, red
$0.12 \times 0.05 \times 0.02 \mathrm{~mm}$
$Z=2$

1150 reflections with $I>2 \sigma(I)$
diffractometer
$R_{\text {int }}=0.067$

Monochromator: graphite
0.3° wide ω exposures scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.942, T_{\text {max }}=0.992$
9164 measured reflections
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=2.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0635 P)^{2}\right]$
$w R\left(F^{2}\right)=0.132$	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=1.01$	$(\Delta / \sigma)_{\max }<0.001$
1880 reflections	$\Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3}$

$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.9935(3)$	$0.3795(3)$	$0.1722(2)$	$0.0386(7)$
C2	$0.8754(4)$	$0.2917(4)$	$0.0266(2)$	$0.0472(7)$
H2	0.8591	0.2450	-0.0403	$0.057 *$
C3	$0.7656(3)$	$0.3549(4)$	$0.0898(2)$	$0.0457(7)$
H3	0.6582	0.3609	0.0751	0.055^{*}
C4	$1.1147(4)$	$0.4178(5)$	$0.2537(2)$	$0.0614(9)$
H4A	1.1663	0.3116	0.2745	0.092^{*}
H4B	1.0661	0.4695	0.3136	0.092^{*}
H4C	1.1905	0.4974	0.2260	0.092^{*}
C5	$0.5122(3)$	$0.3827(3)$	$0.41260(19)$	$0.0346(6)$
C6	$0.6258(3)$	$0.5121(3)$	$0.42497(17)$	$0.0310(6)$
C7	$0.6127(3)$	$0.6382(3)$	$0.51780(19)$	$0.0336(6)$
C11	$0.52835(9)$	$0.23376(10)$	$0.31053(5)$	$0.0543(3)$
N1	$0.8402(3)$	$0.4086(3)$	$0.17996(17)$	$0.0404(6)$
H1A	$0.794(3)$	$0.452(3)$	$0.246(2)$	0.049^{*}
N2	$1.0162(3)$	$0.3091(3)$	$0.07907(18)$	$0.0419(6)$
H2A	$1.105(4)$	$0.275(4)$	$0.066(2)$	$0.050 *$
O1	$0.7415(2)$	$0.5352(2)$	$0.36643(13)$	$0.0413(5)$
O2	$0.7146(2)$	$0.7533(3)$	$0.52727(15)$	$0.0512(6)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0307(16)$	$0.0390(16)$	$0.0466(16)$	$-0.0006(13)$	$0.0121(12)$	$-0.0012(12)$
C2	$0.0474(19)$	$0.0524(18)$	$0.0419(15)$	$-0.0007(15)$	$0.0054(14)$	$-0.0076(14)$
C3	$0.0331(16)$	$0.0542(18)$	$0.0500(17)$	$0.0010(14)$	$0.0045(14)$	$-0.0066(14)$
C4	$0.0455(19)$	$0.074(2)$	$0.065(2)$	$0.0006(17)$	$-0.0009(16)$	$-0.0138(17)$
C5	$0.0292(14)$	$0.0381(15)$	$0.0370(13)$	$-0.0020(12)$	$0.0105(11)$	$-0.0084(11)$
C6	$0.0245(14)$	$0.0386(15)$	$0.0299(12)$	$0.0022(11)$	$0.0042(11)$	$0.0018(11)$

C7	$0.0285(14)$	$0.0361(15)$	$0.0363(13)$	$-0.0010(12)$	$0.0059(11)$	$0.0007(11)$
Cl1	$0.0482(5)$	$0.0624(5)$	$0.0532(5)$	$-0.0135(4)$	$0.0227(4)$	$-0.0260(4)$
N1	$0.0347(14)$	$0.0444(14)$	$0.0428(13)$	$0.0027(11)$	$0.0158(11)$	$-0.0063(11)$
N2	$0.0347(14)$	$0.0450(15)$	$0.0468(13)$	$0.0075(11)$	$0.0177(12)$	$-0.0038(11)$
O1	$0.0315(11)$	$0.0521(12)$	$0.0409(10)$	$-0.0071(9)$	$0.0177(8)$	$-0.0033(9)$
O2	$0.0441(12)$	$0.0547(13)$	$0.0557(12)$	$-0.0212(10)$	$0.0237(10)$	$-0.0174(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 2$	1.319 (3)
C1-N1	1.329 (3)
C1-C4	1.477 (4)
C2-C3	1.337 (4)
C2-N2	1.366 (4)
C2-H2	0.9300
C3-N1	1.363 (3)
C3-Cl1	3.613 (3)
C3-H3	0.9300
C4-H4A	0.9600
C4-H4B	0.9600
N2-C1-N1	107.3 (2)
N2-C1-C4	126.8 (3)
N1-C1-C4	125.9 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	106.7 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.7
N2-C2-H2	126.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	107.3 (3)
C2-C3-Cl1	141.6 (2)
N1-C3-Cl1	71.46 (15)
C2-C3-H3	126.4
N1-C3-H3	126.4
$\mathrm{Cl} 1-\mathrm{C} 3-\mathrm{H} 3$	66.9
C1-C4-H4A	109.5
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
H4A-C4-H4B	109.5
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
H4A-C4-H4C	109.5
N2-C2-C3-N1	-0.4 (3)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	-82.1 (4)
$\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$	178.7 (2)
C11-C5-C6-O1	1.6 (4)
$\mathrm{C} 7{ }^{\text {i }}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	-0.7 (4)
C11-C5-C6-C7	-177.85 (17)
O1-C6-C7-O2	0.9 (3)
C5-C6-C7-O2	-179.6 (2)
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 5^{\mathrm{i}}$	-178.8 (2)

C4-H4C	0.9600
C5-C6	1.392 (3)
C5-C7 ${ }^{\text {i }}$	1.406 (3)
C5-Cl1	1.737 (2)
C6-O1	1.259 (3)
C6-C7	1.532 (3)
C7-O2	1.242 (3)
C7-C5 ${ }^{\text {i }}$	1.406 (3)
N1-H1A	0.99 (3)
N2-H2A	0.82 (3)
H4B-C4-H4C	109.5
C6-C5-C7 ${ }^{\text {i }}$	122.8 (2)
C6-C5-C11	119.15 (18)
$\mathrm{C} 7{ }^{\text {i }}-\mathrm{C} 5-\mathrm{Cl1}$	117.96 (19)
O1-C6-C5	125.7 (2)
O1-C6-C7	115.9 (2)
C5-C6-C7	118.4 (2)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 5^{\text {i }}$	123.7 (2)
O2-C7-C6	117.5 (2)
C5 ${ }^{\text {i }}$ - $7-\mathrm{C} 6$	118.8 (2)
C5-C11-C3	117.80 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	109.1 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	121.6 (15)
C3-N1-H1A	129.0 (15)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	109.6 (2)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	118 (2)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	132 (2)
$\mathrm{C} 7{ }^{\mathrm{i}}-\mathrm{C} 5-\mathrm{Cl} 1-\mathrm{C} 3$	161.62 (18)
C2-C3-C11-C5	135.2 (3)
N1-C3-C11-C5	40.6 (2)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	0.2 (3)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	-179.3 (3)
C2-C3-N1-C1	0.2 (3)
$\mathrm{Cl} 1-\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cl}$	139.7 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	-0.4 (3)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	179.1 (3)

sup-4

supplementary materials

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 5^{\mathrm{i}}$	$0.7(4)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 3$	$-21.1(3)$	
Symmetry codes: (i) $-x+1,-y+1,-z+1$.		

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1$	$0.99(3)$	$1.73(3)$	$2.713(3)$	$172(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.82(3)$	$1.96(3)$	$2.719(3)$	$152(3)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{ii}}$	$0.82(3)$	$2.40(3)$	$3.014(3)$	$132(3)$

Symmetry codes: (ii) $-x+2, y-1 / 2,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

